
Divergence Theorem and Its Application in Charac-

terizing Fluid Flow

Let v be the velocity of flow of a fluid element and ρ(x, y, z, t)

be the mass density of fluid at a point (x, y, z) at time t. Thus,

q = ρv represents a vector in the direction of flow with magnitude

equal to the mass flow rate per unit area. Then

q • d~σ = (q • n)dA (1)

represents the differential mass flow rate through a directed ele-

ment of surface area, i.e. d~σ = ndA.

Let

q = qxi + qyj + qzk (2)

Let us consider an closed differential volume element defined by

x̄ ≤ x ≤ x̄ + dx

ȳ ≤ y ≤ ȳ + dy

z̄ ≤ z ≤ z̄ + dz

The surface vector at y = ȳ can be expressed as

−jdxdz

Notice that the minus sign is used to denote the outward direction.

Thus, the differential mass flow rate outward though this surface

is

q • [−j(dx)(dz)] = −qydxdz (3)

Therefore, if qy in this equation is positive, the flow through this

surface is into the volume element.
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On the other hand, the differential flow rate through the surface

at y = ȳ + dy is

(dxdzj) • q(x̄, ȳ + dy, z̄) ∼=

qy +

∂qy

∂y
dy


 dxdz (4)

Note that the inner product on the left hand side of the above

equation results in qy(x̄, ȳ + dy, z̄)dxdz. Notice also that similar

treatment can be carried out for the other 4 faces.

The net differential outward flow rate is

dF =





qx +

∂qx

∂x
dx


− qx


 dydz

+





qy +

∂qy

∂y
dy


− qy


 dxdz

+





qz +

∂qz

∂z
dz


− qz


 dxdy

=


∂qx

∂x
+

∂qy

∂y
+

∂qz

∂z


 dxdydz

Thus

dF = (∇ • q) dV = ( div q) dV (5)

This result implies that ∇ • q at a point P represents the rate

of outward fluid flow per unit volume across the boundary from a

differential volume associated with P .

If no mass is added (generated) or withdrawn (disappeared)

within the boundary of the differential volume dV , the mass bal-

ance can be written as

−∂ρ

∂t
dV = dF = (∇ • q) dV (6)
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or
∂ρ

∂t
+∇ • (ρv) = 0 (7)

This is the so-called equation of continuity.

For incompressible fluid, since the density is constant, the above

equation can be written as

∇ • v = 0 (8)

It is also clear that for incompressible fluid

ρ∇ • v = ∇ • q = 0 (9)

Thus, the net outward flow rate across the boundary of the dif-

ferential volume element is zero, i.e.

dF = (∇ • q) dV = 0 (10)

If there is a point where mass is added to (or generated in) the

differential volume within the boundary, then

∂ρ

∂t
dV = − (∇ • q) dV + S̃dV (11)

where, S̃ is the rate of addition per unit volume. For incompress-

ible fluid, ∂ρ/∂t = 0. Thus,

S̃ = ∇ • q = ρ∇ • v (12)

We speak of points where fluid is added to or taken from the

system as sources and sinks respectively. From equation (12), we

can see that a source is associated with positive ∇ • v.

Now, consider a closed bounded region V of incompressible

fluid in 3-dimensional space. Suppose there are sources in each

differential volume dV in the region. Thus, for each differential

volume

S̃dV = dF = ρ(∇ • v)dV (13)
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is the amount of fluid introduced in dV per unit time (i.e. LHS)

or the net outward fluid flow rate across the boundary of the

differential volume (i.e. RHS). Thus, the net generation rate of

fluid mass within the region V through sources and/or sinks is
∫ ∫ ∫

V S̃dV = ρ
∫ ∫ ∫

V(∇ • v)dV (14)

If the total mass is conserved and the fluid is incompressible, this

fluid clearly must escape from the region V through the surface

S which bounds it. Let us use d~σ to represent a surface element

vector and

d~σ = ndA (15)

Thus, the outward fluid flow through the surface element is

ρv • d~σ = ρv • ndA (16)

The total outward flow rate through S is

ρ
∮ ∮

S v • d~σ = ρ
∮ ∮

S(v • n)dA (17)

where, the symbol “
∮ ∮
S” denotes the integration over closed sur-

face S . Equating the right hand sides of equations (14) and (17),

one obtain the Divergence Theorem, i.e.

∫ ∫ ∫

V(∇ • v)dV =
∮ ∮

S(v • n)dA (18)

This theorem can be proved without referring to the physical

consideration. It can be directly established mathematically. As

long as v and its partial derivatives are continuous in V and on S
and if S is piecewise continuous, the Divergence Theorem is always

valid.

In a space region V ,
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1. ∇× F = 0 (everywhere) implies that
∮

C F • dr = 0

In other words, the net circulation of F around a closed curve

C in V is zero.

2. ∇ • F = 0 (everywhere) implies that
∮ ∮

S F • d~σ = 0

In other words, the net flux of F through a closed surface S
in V is zero.

Green’s Theorem and Its Application in Characteriz-

ing Heat Conduction

Let v1 = ϕ1∇ϕ2 and substitute into the Divergence Theorem:
∫ ∫ ∫

V ∇ • ϕ1∇ϕ2dV =
∮ ∮

S n • ϕ1∇ϕ2dA (19)

By making use of the identity

∇ • φu = φ∇ • u + u • ∇φ

the following First Form of Green’s Theorem can be obtained:
∫ ∫ ∫

V
(
ϕ1∇2ϕ2 +∇ϕ1 • ∇ϕ2

)
dV =

∮ ∮

S (n • ϕ1∇ϕ2) dA

(20)

Let v2 = ϕ2∇ϕ1 and substitute into the Divergence Theorem

again. Subtracting the resulting equation from equation (20), one

can derive the Second Form of Green’s Theorem, i.e.,
∫ ∫ ∫

V
(
ϕ1∇2ϕ2 − ϕ2∇2ϕ1

)
dV =

∮ ∮

S n• (ϕ1∇ϕ2 − ϕ2∇ϕ1) dA

(21)

The following special cases of the Green’s Theorem can also be

derived form the two original forms:
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1. ϕ1 = ϕ2 = ϕ

The first form becomes
∫ ∫ ∫

V
[
ϕ∇2ϕ + (∇ϕ)2

]
dV =

∮ ∮

S ϕ (n • ∇ϕ) dA (22)

Notice that n • ∇ϕ represents the derivative of ϕ in the di-

rection of n and n is the outward normal vector at the given

point on S , i.e.
∂ϕ

∂n
≡ n • ∇ϕ

Thus,
∫ ∫ ∫

V
[
ϕ∇2ϕ + (∇ϕ)2

]
dV =

∮ ∮

S


ϕ

∂ϕ

∂n


 dA (23)

2. ϕ1 = ϕ and ϕ2 = 1

The second form becomes
∫ ∫ ∫

V
(
∇2ϕ

)
dV =

∮ ∮

S (n • ∇ϕ) dA =
∮ ∮

S


∂ϕ

∂n


 dA

(24)

Let us consider the heat flow in a region in space such that the

temperature T = T (x, y, z, t). For any region V bounded by a

closed surface S, the rate at which heat is absorbed by a volume

element dV is

dQ1 = ρCp
∂T

∂t
dV (25)

If there is no sources or sinks in V , the net rate of heat flow into

V is

Q1 =
∫ ∫ ∫

V


ρCp

∂T

∂t


 dV (26)

Consider the outward heat flow rate from V across a surface ele-

ment on S, i.e.

−dQ2 = −k
∂T

∂n
dA = −k (∇T • n) dA (27)
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Thus, the net heat flow rate into V is

Q2 =
∮ ∮

S k (∇T • n) dA (28)

Since Q1 = Q2, one can obtain

∫ ∫ ∫

V


ρCp

∂T

∂t


 dV =

∮ ∮

S k (∇T • n) dA (29)

According to the special case 2 of Green’s Theorem, the RHS of

the above equation can be substituted by
∮ ∮

S k (∇T • n) dA =
∫ ∫ ∫

V k∇2TdV (30)

Thus,
∫ ∫ ∫

V


ρCp

∂T

∂t
− k∇2T


 dV = 0 (31)

⇒ ∂T

∂t
= α∇2T (32)

where,

α =
k

ρCp

At steady state, ∂T/∂t = 0. Thus,

∇2T = 0 (33)

This is the so-called Laplace equation. Let us consider two types

of boundary conditions:

• (i) T is prescribed on S;

• (ii) The outward heat flow rate −k∂T
∂n is prescribed on S.

The uniqueness of solution to the Laplace equation can be de-

termined with Green’s Theorem. The analysis is given in the

sequel:
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Case (i): Dirichlet Problem

From special case 1 of the Green’s Theorem, one can obtain

∫ ∫ ∫

V
[
T∇2T + (∇T )2

]
dV =

∮ ∮

S


T

∂T

∂n


 dA (34)

By substituting the Laplace equation, we can obtain

∫ ∫ ∫

V(∇T )2dV =
∮ ∮

S


T

∂T

∂n


 dA (35)

Let us next assume two solutions exist, i.e. ∇2T1 = 0 and

∇2T2 = 0, then ∇2(T1 − T2) = 0. Thus, T1 − T2 is also a

solution. Substituting (T2 − T1) into equation (35) yields the

following result:

∫ ∫ ∫

V [∇(T2 − T1)]
2 dV =

∮ ∮

S


(T2 − T1)

∂(T2 − T1)

∂n


 dA = 0

(36)

This is due to the fact that temperature is prescribed on S. As a

result,

∇(T2 − T1) = 0 (37)

Thus, T2−T1 is constant in V . However,since T1 = T2 on S ⊂ V ,

one can conclude that T1 = T2 in V , i.e., the solution of Laplace

equation is unique if temperature is prescribed on boundary sur-

face.

Case (ii): Neumann Problem

The 2nd special case of Green’s Theorem and Laplace equation

can be used to produce the following equation:

∫ ∫ ∫

V
(
∇2T

)
dV =

∮ ∮

S


∂T

∂n


 dA = 0 (38)

8



Thus, we can conclude that the net flow across boundary S must

be zero. This is obvious for steady state heat flow without sources

and/or sinks. In other words, ∂T/∂n cannot be prescribed arbi-

trarily. Its mean value on S must be zero.

Let us again assume that T1 and T2 are two distinct solutions

of the Laplace equation. Then it can be shown as before that

T2−T1 is also a solution. Substituting T2−T1 into equation (35)

yields

∫ ∫ ∫

V [∇(T2 − T1)]
2 dV =

∮ ∮

S


(T2 − T1)

∂(T2 − T1)

∂n


 dA = 0

(39)

This is due to the fact that the outward heat flow rate −k∂T
∂n is

prescribed on S, i.e.
∂T1

∂n
=

∂T2

∂n
However, an arbitrary constant C must be included in the general

solution in this case, i.e.

T2 − T1 = C (40)

Circulation

Suppose that the motion of a fluid element is simply a rotation

about a given axis in space. Thus,

v = ~ω × r (41)

∇ • v = div v = ∇ • (~ω × r)

= r • (∇× ~ω)− ~ω • (∇× r) = 0 (42)
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This is due to the fact that ~ω is a constant vector and

∇× (xi + yj + zk) = 0

.

In addition,

∇× v = curl v = ∇× (~ω × r)

= ~ω (∇ • r)− (~ω • ∇) r = 2~ω (43)

Notice that ∇ • r = 3 and (~ω • ∇) r = ~ω.

Thus, if a fluid element experiences pure rotation

∇ • v = 0 (44)

∇× v = 2~ω (45)

If a fluid is irrotational and incompressible without sources and

sinks,

∇ • v = 0 (46)

∇× v = 0 (47)

Since ∇ × v = 0, it implies that the existence of a potential φ

such that

∇φ = v (48)

Thus,

∇ • v = ∇ •∇φ = ∇2φ = 0 (49)

This is the so-called Laplace Equation! Generally speaking, in any

continuously differentiable vector field F with zero divergence and

curl in a simple region, the vector is the gradient of a solution of

the Laplace equation.
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